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In order to solve the problem that the model-based State of Charge (SOC) estimation method is too dependent on the model
parameters in the SOC estimation of electric vehicles, an improved genetic algorithm is proposed in this paper.Themethod has the
advantages of being able to quickly determine the search range, reducing the probability of falling into local optimum, and having
high recognition accuracy. Then we can realize online dynamic identification of power battery model parameters and improve
the accuracy of model parameter identification. In addition, considering the complex application environment and operating
conditions of electric vehicles, an SOC estimation method based on improved genetic algorithm and unscented particle filter
(improved GA-UPF) is proposed. And we compare the improved GA-UPF algorithm with the least square unscented particle
filter (LS-UPF) and improved GA unscented Kalman filter (improved GA-UKF) algorithm. The comparison results show that
the improved GA-UPF algorithm proposed in this paper has higher estimation accuracy and better stability. It also reflects the
practicability and accuracy of the improved GA parameter identification algorithm proposed in this paper.

1. Introduction

Power battery is one of the core components of electric
vehicles. Accurate estimation and management of its key
state is the core issue of electric vehicle development. State
of charge (SOC) is one of the key states, which has a great
significance for energy-optimized management and healthy
life management of electric vehicles. Accurate estimation of
SOC can maximize the utilization rate of power battery,
extend battery life, and ultimately reduce power battery cost.

In recent years, a series of online estimation methods of
battery SOC are proposed for the SOC estimation of electric
vehicles [1–27], including the ampere hour integral method
[5–7], the neural network method [19–22], the filter method
based on the battery model [8–13], and so on.The calculation
of the ampere-time integral method is small and it is easy to
implement, but its estimation error is large because of the
accumulated error. The neural network method is easy to
build an intelligent model, but it requires a large amount of
experimental data to train the neural network model, and

the amount of calculation is large. In order to overcome
the effects of cumulative errors and excessive computational
problems, a series of the filter method based on the battery
model have been proposed [14–18]. Piller et al. [8] proposed
theKalman filter (KF)method for SOC estimation, which has
closed-loop correction structure. However, the KF is a linear
filter; the battery model is a nonlinear model; it will produce
a large error. In order to get better results, scholars proposed
a lot of methods based on the extended Kalman filter (EKF)
[10, 13–15, 26] and the unscented Kalman filter (UKF) [16–18,
24]. Wang et al. [26] proposed a dual extended Kalman filter
method for the SOC estimation. Plett [14, 15, 18] proposed
EKF and UKF for SOC and battery model parameter esti-
mation. Wang [17] proposed an improved unscented Kalman
filter for the SOC estimation. However, the accuracy of EKF
and UKF both are not sufficiently enough to be used in engi-
neering applications. Their accuracy is very dependent on the
accuracy of the battery model parameters. Additionally, their
noise distribution must be the Gaussian distribution, which
is more deviating from the real noise environment.
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According the above analysis of mainstream SOC estima-
tion methods, the special background of power battery appli-
cation in electric vehicle field, and its engineering require-
ments, this paper proposes an SOC estimation method based
on improved GA-UPF algorithm. The algorithm innovations
and advantages are as follows.

(1) We propose an optimization strategy based on least
squares method to initialize GA initial population.
This strategy is used to make the GA algorithm
quickly and accurately converge and reduce the
computational complexity of GA algorithm and its
probability of falling into local optimum.

(2) We propose an improved GA algorithm that is more
suitable for nonlinear complex system identification
of the power battery model.The algorithm can reduce
the complexity of the algorithm and obtain more
accuratemodel parameters. Finally, the algorithm can
improve the estimation accuracy of SOC.

(3) We analyze the accuracy, complexity, dynamic char-
acteristics, and other factors of many power battery
models, such as the Rint model, the Thevenin model,
the Partnership for a New Generation of Vehicles
(PNGV)model [23, 25], theGeneral nonlinear (GNL)
model, and so on. Then we choose the PNGV
model, which is more able to characterize the internal
changes in the battery charging and discharging
process and has practical physical significance.

(4) We consider the measurement data of the power
battery with complex noise, abnormal points, and
severe fluctuations, and then use the unscented par-
ticle filter (UPF) algorithm for SOC estimation. The
advantages of UPF are that it has strong robustness,
computational accuracy, and better suppression effect
on colored noise, which is more in line with actual
engineering requirements.

The rest of paper is organized as follows. In Section 2,
we introduce the power battery model and the parameter
identification method based on the improved GA algorithm.
In Section 3, we introduce an SOC estimation algorithm
based on improved GA-UPF. In Section 4, simulations and
comparison tests based on the PNGVmodel are presented to
verify the superiority of the proposed algorithm. In Section 5,
the improved GA-UPF algorithm proposed in this paper is
summarized.

2. Power Battery Equivalent Model and Model
Parameter Identification

2.1. PNGV Model. The PNGV model was proposed for the
2001 US New Generation Vehicle Cooperation Program
to model power batteries in the automotive field [23].
The PNGV model has the advantages of low processor
requirements, easy implementation, and being suitable for
describing the dynamic characteristics of the battery. It is
beneficial to the analysis of battery characteristics and ismore
suitable for the modeling of lithium ion batteries. Therefore,

considering the complexity and accuracy of the model, the
PNGVmodel is adopted and displayed. The model structure
is shown in Figure 1.

In the figure, Uocv is the open circuit voltage, 𝐶𝑏 is the
cell capacitance, 𝑅𝑒 is the cell internal resistance, 𝑅𝑝 is the
cell polarized resistance, 𝐶𝑝 is the cell polarized capacitance,𝑈𝑑 is the cell terminal voltage, 𝐼𝑡 is the circuit current, 𝑈𝑏 is
the terminal voltage across the capacitance 𝐶𝑏, and 𝑈𝑝 is the
terminal voltage across the capacitance 𝐶𝑝.

According to the PNGV model shown in Figure 1, the
measurement equation for the PNGV battery model can be
expressed by

𝑈𝑑 = 𝑈𝑜𝑐V (𝑆𝑂𝐶,T) − 𝑈b − 𝑈𝑝 − 𝐼 × Re

�̇�𝑏 = 1𝐶𝑏 × 𝐼
�̇�𝑝 = − 1𝐶𝑝 × 𝑅𝑝 × 𝑈𝑝 + 1𝐶𝑝 × 𝐼

(1)

where 𝑈𝑜𝑐V(𝑆𝑂𝐶,𝑇) is the open circuit voltage at different
SOC values and different temperatures, �̇�𝑏 is the derivation
operation of the voltage𝑈𝑏 , and �̇�𝑝 is the derivation operation
of the voltage 𝑈𝑝.

Then we discrete (1), it can be expressed by

𝑈𝑡𝑑 = 𝑈𝑜𝑐V (𝑆𝑂𝐶𝑡, 𝑇𝑡) − 𝑈𝑡𝑏 − 𝑈𝑡𝑝 − 𝐼𝑡 × 𝑅e

𝑈𝑡𝑏 = 𝑈𝑡−1𝑏 + (Δ𝑡𝐶𝑏) 𝐼𝑡
𝑈𝑡𝑝 = exp( −Δ𝑡(𝐶𝑝𝑅𝑝))𝑈𝑡−1𝑝

+ 𝑅𝑝(1 − exp( −Δ𝑡(𝐶𝑝𝑅𝑝))) 𝐼𝑡

(2)

where 𝑈𝑡𝑑 is the terminal voltage at time t, 𝑈𝑜𝑐V(𝑆𝑂𝐶𝑡, 𝑇𝑡) is
the open circuit voltage related to SOCt and the temperature
value at time t, 𝑈𝑡𝑏 and 𝑈𝑡𝑝 are the terminal voltages across 𝐶𝑏
and 𝐶𝑝 in the PNGVmodel at time t, Δ𝑡 is the simple period,𝐼𝑡 is the measured current of the power battery at the time
t, and 𝑃𝑎𝑟𝑎 = [𝐶𝑏, 𝑅𝑝, 𝐶𝑝, 𝑅𝑒] is the parameter vector to be
identified in the PNGVmodel.

2.2. Battery Model Parameters Identification Based on Im-
proved GA Algorithm. The traditional GA algorithm per-
forms parameter identification by searching globally to find
the optimal solution and does not require difficult mathe-
matical model expressions [28]. Therefore, it is suitable for
the parameter identification of nonstationary process char-
acterization models, such as electric vehicle power battery
model, which has nonlinear characteristics, time-varying
parameters, complex environmental noise, sharp fluctuations
in collected data, and more transient spikes. However, it has a
long search time and fall into local optimum easily because of
the characteristics of its global search. Aiming at the problem,
an improved GA search strategy is proposed. In this strategy,
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Figure 1: PNGV battery model.

we use the least squares method to initialize the search range
at the initial moment of the algorithm. It can effectively
shorten the search time, avoid falling into local optimum,
and reduce the complexity of the algorithm. The flow chart
of improved GA algorithm is shown in Figure 2, where 𝑔
is the current iterations of the improved GA algorithm and
G is the maximum number of iterations of the improved
GA algorithm. The improved GA algorithm is calculated as
follows.

Step 1. Search range initialization based on LS algorithm [25].
We can obtain (3) by transforming (2):

𝑈𝑡𝑑 = 𝑎 × 𝑈𝑡−1𝑑 + 𝑏 × 𝑈𝑡−2𝑑 + 𝑐 × 𝐼𝑡 + 𝑑 × 𝐼𝑡−1 + 𝑒 × 𝐼𝑡−2 (3)

where 𝑈𝑡−1𝑑 , 𝑈𝑡−2𝑑 , 𝐼𝑡, 𝐼𝑡−1, 𝐼𝑡−2 are measurable values. Based
on (3), we can get the vector 𝛾 expression by LS algorithm.
Equation (4) is as follows:

𝛾 =
[[[[[[[[[[[
[

𝑎
𝑏
𝑐
𝑑
𝑒

]]]]]]]]]]]
]

=

[[[[[[[[[[[[[[[[

1 + exp (−𝜃)
− exp (−𝜃)
−𝑅𝑒

(1 + exp (−𝜃)) 𝑅𝑒 − (1 − exp (−𝜃)) 𝑅𝑝 − 1𝐶𝑝
(1 − exp (−𝜃)) 𝑅𝑝 − exp (−𝜃) 𝑅𝑒 + exp (−𝜃)𝐶𝑏

]]]]]]]]]]]]]]]]

(4)

where 𝜃 = Δ𝑡/(𝐶𝑝𝑅𝑝).

The expression of 𝑃𝑎𝑟𝑎 = [𝐶𝑏, 𝑅𝑝, 𝐶𝑝, 𝑅𝑒] obtained by (4)
is as follows:

𝑃𝑎𝑟𝑎 =
[[[[[[[[[

𝐶𝑏
𝑅𝑝
𝐶𝑝
𝑅𝑒

]]]]]]]]]

𝑇

=
[[[[[[[[[[[[

− 1 + 𝑏𝑐 + 𝑑 + 𝑒𝑒 − 𝑏 × 𝑑 + 𝑐 × 𝑏2(1 + b)2
− Δ𝑡𝑐 × ln (−b)−𝑐

]]]]]]]]]]]]

𝑇

(5)

Then, we can use the voltage values and the current
values measured at the previous L (L is the time window of
the least squares algorithm) time to obtain the vector 𝛾 =[a, b, c, d, e]𝑇. The equation is as follows:

𝛾 = (𝜑𝑡𝑇 ⋅ 𝜑𝑡)−1 ⋅ 𝜑𝑡𝑇 ⋅ 𝑈𝑡𝑑 (6)

where 𝜑𝑡 = [𝑈𝑡−1𝑑 , 𝑈𝑡−2𝑑 , 𝐼𝑡, 𝐼𝑡−1, 𝐼𝑡−2].
According to (5), Parat can be calculated as the initial

parameter value of the PNGV model. Then, we use Parat as
the center point and r as the radius in the high-dimensional
space (the spatial dimension is equal to the dimension of the
PNGVmodel parameters) to determine 𝑟𝑎𝑛𝑔𝑝𝑎𝑟𝑎𝑡 (the initial
search range) of the improved GA algorithm. Equation (7) is
as follows:

𝑟𝑎𝑛𝑔𝑝𝑎𝑟𝑎𝑡 = [𝑚𝑖𝑛,𝑚𝑎𝑥]
= [(𝑃𝑎𝑟𝑎𝑡 − 𝑟) ± 𝜀, (𝑃𝑎𝑟𝑎𝑡 + 𝑟) ± 𝜀] (7)

where 𝜀 is a constant that𝜀 → 0.
Step 2. Weuse a random uniform distribution to generate the
initial population. The equation is as follows:

𝑃𝑎𝑟𝑎𝑘𝑡 (0) = rand (0, 1) × (max-min) + 𝑃𝑎𝑟𝑎𝑡 (8)

where 𝑘 = 1, . . . , 𝑛, n is the number of populations,𝑃𝑎𝑟𝑎𝑘𝑡 (0) is the k-th individual value of the initial population
at time t, rand(0, 1) is the random vector.
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Figure 2: Improved GA algorithm flow chart.

Step 3. The individual’s fitness value needs to be calculated.
The equation for calculating individual fitness is as follows
[28]:

𝑓𝑖𝑡𝑘𝑡 (g) = �̂�𝑘𝑑 (g) − 𝑈𝑡𝑑 (9)

where 𝑘 = 1, . . . , 𝑛, 𝑔 = 1, . . . , 𝐺, G is the maximum number
of iterations, 𝑓𝑖𝑡𝑘𝑡 (𝑔) is the fitness value of the g-th generation
of the k-th individual at time t, �̂�𝑘𝑑(g) is an estimated value
of the battery terminal voltage at time t of the PNGV model
calculated from the k-th individual of the g-th generation.

Step 4. Genetic manipulation is as follows:
(a) Select operation: we use the roulette strategy to select

N individuals [28].
(b) Cross operation: we generate 𝑟𝑐𝑜𝑟(𝑘) = rand(0, 1).

If 𝑟𝑐𝑜𝑟(𝑘) < 𝑃𝑐𝑜𝑟, the k-th individual is selected for cross
operation. The crossover equation is as follows:

𝑃𝑎𝑟𝑎𝑎𝑡 (g−) = 𝜌𝑃𝑎𝑟𝑎𝑎𝑡 (g) + (1 − 𝜌) 𝑃𝑎𝑟𝑎𝑏𝑡 (g)
𝑃𝑎𝑟𝑎𝑏𝑡 (g−) = 𝜌𝑃𝑎𝑟𝑎𝑏𝑡 (g) + (1 − 𝜌)𝑃𝑎𝑟𝑎𝑎𝑡 (g) (10)

where 𝑃𝑎𝑟𝑎𝑎𝑡 (𝑔−) is the a-th individual at time t after the
cross operation, 𝑃𝑎𝑟𝑎𝑏𝑡 (𝑔−) is the b-th individual at time t
after the cross operation, 𝜌 is the random number generated
between [0, 1], 𝑟𝑐𝑜𝑟(𝑘) = rand(0, 1), and 𝑃𝑐𝑜𝑟 is the crossover
probability.

(c) Mutation operation: We generate 𝑟𝑚𝑢𝑡(𝑘) ∈ [0, 1]. If𝑟𝑚𝑢𝑡(𝑘) < 𝑃𝑚𝑢𝑡, the k-th individual is selected for mutate

operation. The equation for the mutation operation is as
follows:

𝑃𝑎𝑟𝑎𝑐𝑡 (g+)
= {{{

𝑃𝑎𝑟𝑎𝑐𝑡 (g−) + (𝑚𝑎𝑥 − 𝑃𝑎𝑟𝑎𝑐𝑡 (g−)) (1 − 𝑓 (𝑔)) , 𝜇 ≥ 0.5
𝑃𝑎𝑟𝑎𝑐𝑡 (g+) + (𝑃𝑎𝑟𝑎𝑐𝑡 (g−) − 𝑚𝑖𝑛) (1 − 𝑓 (𝑔)) , 𝜇 ≥ 0.5

(11)

where 𝑓(𝑔) = 𝜇(1 −𝑔/𝐺)2, 𝜇 and 𝜇 are the random number
between [0, 1], 𝑔 = 1, 2, . . ., G, 𝑟𝑚𝑢𝑡(𝑘) = rand(0, 1), and Pmut
is the mutation probability.

3. Power Battery SOC Estimation Algorithm
Based on Improved GA-UPF

The power battery has strong noise and complicated driving
conditions in electric vehicle application. The collected bat-
tery data contains a lot of noise and abnormal points; the data
changes drastically and there are many peak transient values.
Thus, we want the SOC estimation method to have strong
robustness, antinoise ability and self-correction capability.
Based on the above considerations, the UPF algorithm is
used for SOC estimation. However, the estimation accuracy
of the filtering algorithm depends on the accuracy of the
power battery model. Thus, we propose a power battery
SOC estimation method based on the improved GA-UPF
algorithm, whichmakes it more suitable for the estimation of
the power battery SOC in the electric vehicle field. The flow
chart is shown in Figure 3:(1) Set basic parameters: several control parameters
should be set, including number of particles N, number of
population n, maximum number of genetic iterations G, the
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Controller power on

The battery model parameter identification at time t is based on the improved GA
algorithm, Figure 2

Set Parameters

t=t+1

Initialize the particle set and  point set of the UPF algorithm

Calculate the SOC value of the first m time using the ampere-time integral method:
３／＃1,· · ·, ３／＃m

Estimation of ３／＃Ｎ at time t estimated based on UPF algorithm

Determination of initial SOC value by open circuit voltage method: ３／＃0

Figure 3: Improved GA-UPF algorithm flow chart.

crossover probability 𝑃𝑐𝑜𝑟, the mutation probability 𝑃𝑚𝑢𝑡, 𝜎
point search range 𝛼, state variable scale parameter 𝑘, and
covariance precision parameter 𝛽.(2) Determine the initial SOC by open circuit voltage
method: this part is only calculated once when the electric
vehicle batterymanagement system (BMS) is used for the first
time. At this time, the BMS is powered on, but the power
battery main relay is not closed and the power battery is
left standing long enough. Therefore, we can believe that 𝑈0𝑑
equals Uocv.(3) Calculate the SOC of the first m time: we use the
ampere-time integral method:

𝑆𝑂𝐶𝑡 = 𝑆𝑂𝐶𝑡−1 + 𝜂 (𝑇𝑡, 𝐼𝑡) × Δ𝑡𝐶𝑛 × 𝐼𝑡 (12)

where 𝑡 is the time, 𝑡 = 1, . . . , 𝑚,𝑚 ≪ 𝑇𝑆𝑂𝐻, TSOH is the time
when the power battery is terminated, 𝜂(𝑇𝑡, 𝐼𝑡) is the battery
capacity factor associated with 𝑇𝑡 and 𝐼𝑡 (positive at discharge
and negative at charge) at time 𝑡, 𝐶𝑛 is rated capacity, �t is the
simple period.(4) Initialize the particle set and 𝜎 point set of the
UPF algorithm: when 𝑡 = 𝑚, we generate 𝑃𝑎𝑟𝑡𝑡 ={𝑃𝑎𝑟𝑡𝑡(1), 𝑃𝑎𝑟𝑡𝑡(2), . . . , 𝑃𝑎𝑟𝑡𝑡(N)} by a random uniform dis-
tribution; each particle has a weight of 1/𝑁;𝑁 is the number
of particles.

Then we build 𝑋𝑡 = {𝑋𝑡(1),𝑋𝑡(2), . . . , 𝑋𝑡(𝑁)} for each
particle; the equation is as follows:

𝑋𝑡 (𝑖)
= [[[[
[

𝑃𝑎𝑟𝑡𝑡 (𝑖)
𝑃𝑎𝑟𝑡𝑡 (𝑖) + √(l + 𝜆)P𝑖𝑡 (j), 𝑗 = 1, . . . , 𝑙

𝑃𝑎𝑟𝑡𝑡 (𝑖) − √(l + 𝜆)P𝑖𝑡 (j), 𝑗 = 𝑙 + 1, . . . , 2𝑙
]]]]
]

(13)

where 𝑖 = 1, 2, . . . , 𝑁, 𝑙 is the dimension of the state quantity
of the state equation, 𝜆 is the scale when generating the 𝜎
point set.(5) Parameter identification of the PNGVmodel based on
improved GA algorithm at time t: this part of the content has
been introduced in Section 2.2.(6) SOC estimation based on the UPF algorithm: we
obtained the state-space measurement equations of the UPF
algorithm based on (2) and (12). 𝑆𝑂𝐶𝑡 is the state variable at
time t,𝑈𝑡𝑑 is the measurable variable at time 𝑡.The estimation
steps are as follows.

(a) We perform UT transformation on the 𝜎 point set
generated by (13) and obtain the set of particles at time t
[9, 15, 17]. The equations are as follows:

𝑋𝑡 (𝑖−) = 𝑋𝑡−1 (𝑖−) + 𝜂 (𝑇𝑡, 𝐼𝑡) × Δ𝑡𝐶𝑛 × 𝐼𝑡 (14)

𝑊𝑗𝑚 = {{{{{{{
𝜆𝑙 + 𝜆 , 𝑗 = 012 (𝑙 + 𝜆) , 𝑗 ̸= 0 (15)

𝑊𝑗𝑐 = {{{{{{{
𝜆𝑙 + 𝜆 + (1 + 𝛼2 − 𝛽) , 𝑗 = 012 (𝑙 + 𝜆) , 𝑗 ̸= 0 (16)

𝛿𝑡 (𝑖−) = 2𝑙∑
𝑗=0

𝑊𝑗𝑚𝑋𝑗𝑡 (𝑖−) (17)

𝑃𝑡 (𝑖−)
= 2𝑙∑
𝑗=0

𝑊𝑗𝑚 (𝑋𝑗𝑡 (𝑖−) − 𝛿𝑡 (𝑖−)) (𝑋𝑗𝑡 (𝑖−) − 𝛿𝑡 (𝑖−))𝑇 (18)
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Figure 4: Simulation data generation process.

𝜑𝑡 (𝑖−) = �̂�𝑑 (𝑋𝑡 (𝑖−) , 𝐼𝑡) (19)

𝑌𝑡 (𝑖−) = 2𝑙∑
𝑗=0

𝑊𝑗𝑚𝜑𝑗𝑡 (𝑖−) (20)

𝑃𝑦𝑡 ,𝑦𝑡 = 2𝑙∑
𝑗=0

𝑊𝑗𝑐 (𝜑𝑗𝑡 (𝑖−) − 𝑌𝑡 (𝑖−)) (𝜑𝑗𝑡 (𝑖−) − 𝑌𝑡 (𝑖−))𝑇 (21)

𝑃𝑥𝑡 ,𝑦𝑡 = 2𝑙∑
𝑗=0

𝑊𝑗𝑐 (𝑋𝑗𝑡 (𝑖−) − 𝛿𝑡 (𝑖−)) (𝜑𝑗𝑡 (𝑖−) − 𝑌𝑡 (𝑖−))𝑇 (22)

𝐾𝑡 = 𝑃𝑥𝑡 ,𝑦𝑡𝑃𝑦𝑡 ,𝑦𝑡−1 (23)

𝑋𝑡 (𝑖+) = 𝑋𝑡 (𝑖−) + 𝐾𝑡 (𝑈𝑡𝑑 − 𝑌𝑡 (𝑖−)) (24)

where 𝑋𝑡(𝑖−) = [𝑋0𝑡 (𝑖−), . . . , 𝑋𝑗𝑡 (𝑖−), . . . , 𝑋2𝑙𝑡 (𝑖−)]𝑇 is the 𝜎 set
of the ith particle at time t, 𝑊𝑚 = [𝑊0𝑚, . . . ,𝑊𝑗𝑚, . . . ,𝑊2𝑙𝑚 ]
is the weight vector of the 𝜎 set, 𝜆 = 𝛼2(𝑙 + 𝑘) − 𝑙, 𝛼 ∈(0, 1], 𝛽 is the covariance precision; we can improve variance
accuracy by adjusting 𝛽; 𝑊𝑐 = [𝑊0𝑐 , . . . ,𝑊𝑗𝑐 , . . . ,𝑊2𝑙𝑐 ] is
the weight vector of the covariance of the 𝜎 set; 𝜑𝑡(𝑖−) =[𝜑𝑡(𝑖−), . . . , 𝜑𝑗𝑡 (𝑖−), . . . , 𝜑2𝑙𝑡 (𝑖−)] is the model terminal voltage
vector according to 𝜎 set.

(b) We calculate the weight values for each particle and
normalize them. The equation is as follows:

𝑞𝑖 = 1√2𝜋𝑅 exp(−(𝑈𝑡𝑑 − �̂�𝑑 (𝑋𝑡 (𝑖+) , 𝐼𝑡))22𝑅 ) (25)

𝑞𝑖 = 𝑞𝑖∑𝑁𝑖=1 𝑞𝑖 (26)

(c) We calculate the SOC at time t. The equation is as
follows:

𝑆𝑂𝐶𝑡 = 𝑁∑
𝑖=1

𝑋𝑡 (i+) × 𝑞𝑖 (27)

(d)The 𝜎 set is updated by (13).

4. Simulations and Experimental Results

In order to verify the practicability of the SOC estimation
method based on the improved GA-UPF algorithm, we
initialize the power battery model of DSPACE with the
internal parameters of a certain 18650 battery of LG and then
construct the power battery simulation model used for algo-
rithm verification. Thismodel can accurately characterize the
dynamic characteristics and thermal response characteristics
of the power battery to a certain extent. In this section, we
need to verify and compare the model identification accuracy
of the improved GA algorithm and analyze the accuracy of
the improved GA-UPF algorithm in the noise environment.
Therefore, it is considered appropriate to use the battery
model.

Based on the construction of the batterymodel, this paper
selects the current data collected by a certain electric vehicle
of Brilliance in the condition of New European Driving Cycle
(NEDC) working condition as the battery model input. Then
we get the power battery SOC, battery terminal voltage,
and temperature and other internal parameters through the
battery model. The battery model is shown in Figure 4.

The generated battery data is shown in Figure 5.

4.1. Analysis of Battery Parameter Identification Results Based
on Improved GA Algorithm. We use the real current data
under NEDC conditions and the terminal voltage data
generated according to Figure 4 and preform the parameter
identification of SOC in the range of [0.3, 0.9] under the
PNGV battery model by the improved GA algorithm [25].
Then we observe the variation of the model parameters and
compare it with the description of the corresponding parame-
ter characteristics in the LGbatterymanual to verify the effec-
tiveness of the improved GA algorithm in model parameter
identification. The identification results are shown in Table 1.

The identification result shows that at the temperature of
26∘C, as the SOC of the power battery decreases, the ohmic
internal resistance will increase, the polarization internal
resistance gradually increases, and the battery capacitance
gradually decreases. These changes are consistent with the
change in the electrical characteristics of the battery. It can
reflect that the improved GA algorithm proposed in this
paper has certain effectiveness in model identification.
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Figure 5: Battery data.

Table 1: Model parameter identification result.

SOC 𝑈𝑜𝑐V/𝑉 𝐶𝑏/𝐹 𝐶𝑝/𝐹 𝑅𝑝/𝑚Ω 𝑅𝑒/𝑚Ω
0.3 3.5941 36857.4 15252.2 14.2 324.7
0.4 3.6242 31950.3 12191.3 9.8 301.6
0.5 3.6603 42604.9 25085.6 8.3 270.5
0.6 3.7302 47842.6 57508.2 5.6 165.3
0.7 3.8350 53736.3 33678.4 4.8 78.6
0.8 3.9260 57507.5 25563.7 4.45 10.1
0.9 4.0259 58284.1 11203.4 1.6 2.4

4.2. Algorithm Verification Analysis under
Noiseless Conditions

4.2.1. Improved GA-UPF Algorithm Accuracy Verification.
Firstly, in the noiseless environment, the improved GA-
UPF algorithm is used to estimate the SOC to verify its
effectiveness. At the same time, we compare it with LS-UPF

algorithmand improvedGA-UKF algorithm.Theverification
results are shown in Figure 6.

The basic parameters:𝑁 = 50, 𝑛 = 16, G = 30, 𝑃𝑐𝑜𝑟 = 0.8,𝑃𝑚𝑢𝑡 = 0.01, 𝛼 = 0.5, 𝑘 = 2, 𝛽 = 0.
In Figure 6(a), the solid line is the estimated result of

the SOC by the improved GA-UPF algorithm. The black
line is the estimation result of the SOC by the improved
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Figure 6: SOC estimation and error comparison results.

GA-UKF algorithm, the green line is the estimation result of
the SOCby the LS-UPF algorithm, and the red line is the SOC
reference values. Comparison result shows that the proposed
SOC estimation method has higher estimation accuracy, and
the estimation result is closer to the SOC reference value.
In Figure 6(b), the solid line is the error value of the SOC
estimation result based on the improved GA-UPF algorithm,
and the result is convergent and relatively stable. The black
line indicates the error of the SOC estimation result based on
the improved GA-UKF algorithm, and the error fluctuation
is larger than solid line. The green line indicates the error of
the SOC estimation result based on the LS-UPF algorithm,
and the error fluctuation is much larger than the other two
algorithms. It reflects that for nonlinear time-varying systems
such as power batteries, the accuracy of model parameter
identification based on LS algorithm is poor, which directly
affects the accuracy of SOC estimation. It also reflects the
accuracy of the improved GA-UPF algorithm proposed in
this paper.

4.2.2. Improved GA-UPF Algorithm Robustness Verification.
In order to verify the robustness of the improved GA-UPF
algorithm, the following experiment is performed: the initial
SOC is set to 20% and 𝑆𝑂𝐶𝑟𝑒𝑎𝑙0 = 90%. We use a relatively
large error to simulate the strong interference factors such as
outliers in the actual operating conditions of electric vehicles
and verify the self-correcting robustness of the algorithm.The
verification results are shown in Figure 7.

The result in Figure 7 shows that the improved GA-
UPF algorithm can converge to the vicinity of the real SOC
within 10 iterations when there is a large deviation in the
initial SOC. The error is 3% after 10 iterations and finally
can converge to 1%. It is proved that the improved GA-UPF
algorithm proposed in this paper has great robustness in SOC
estimation of power battery. It can converge to true value

quickly under strong anomaly disturbance and has strong
self-correction ability. Therefore, it is suitable for the SOC
estimation problem of power battery with complicated and
varied operating conditions.

4.2.3. Improved GA-UPF Algorithm Stability Verification.
Considering that the traditional GA algorithm has a certain
randomness problem, we propose the idea of using the
LS algorithm to determine the initial search range. We
carry out the following verification: under the same driving
conditions, the LS-UPF algorithm, the improved GA-UKF
algorithm, and the improved GA-UPF algorithm are used to
perform multiple experiments on the same data sequence.
The experimental results are shown in Table 2.

It can be seen from Table 2 that the improved GA-UPF
algorithm proposed in this paper maintains a relatively stable
absolute error and root mean square error in the process
of multiple verifications and has good stability. In addition,
comparedwith the SOCestimationmethod based on LS-UPF
and improved GA-UKF algorithm, the improved GA-UPF
algorithm always has smaller error; that is, the maximum
absolute error is about 0.5% and the root mean square error
is about 0.2%. The maximum absolute error of the LS-UPF
algorithm is about 2.5%, and the root mean square error
fluctuates around 0.5%. The maximum absolute error of the
LS-UPF algorithm is about 3.34%, and the root mean square
error fluctuates around 1.5%. It is proved that the improved
GA-UPF algorithm proposed in this paper has better stability
and accuracy.

4.2.4. Improved GA-UPF Algorithm Time Complexity Anal-
ysis. We know that both GA and UPF algorithm are the
optimization, and SOC estimation is a process that needs to
be done in real time. Therefore, the algorithm operation effi-
ciency must be guaranteed. We use the least squares method
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Figure 7: Comparison of SOC estimates.

Table 2: Improved GA-UPF algorithm stability verification results.

Algorithm Run times MaxAE (%) RMSE(%)
LS-UPF 70 [2.39,2.51] [0.5073,0.5386]
Improved GA-UKF 70 [2.16,3.34] [1.1006,1.8569]
Improved GA-UPF 70 [0.44,0.51] [0.2905,0.4125]

to reduce the initial search range of the GA algorithm. Then,
the efficiency of the GA algorithm is improved. With the
improved efficiency of the GA algorithm, the time complexity
of the improved GA-UPF algorithm proposed in this paper is
also reduced. We analyze the time complexity of improving
the GA-UPF algorithm. The analysis results are shown in
Table 3.

It can be seen from Table 3 that the improved GA-UPF
algorithm has a single execution time of 46.3ms and a
total execution time of 138.9ms. The LS-UPF algorithm has
a single execution time of 44.1 ms and the improved GA-
UKF algorithm has a single execution time of 41.7ms. By
comparison, we can see that the improvedGA-UPF algorithm
has a 2.2ms increase in single run time compared to the LS-
UPF algorithm and an increase of 4.6ms over the single run
time of the improved GA-UKF algorithm. The growth rate
is 5% and 10%, respectively. The extent of this increase is
within our acceptance. Additionally, the current sensor on
our electric car has a sampling period of 50ms.Therefore, the
improved GA-UPF algorithm can meet engineering needs.

4.3. Improved GA-UPF Algorithm Verification under
Noisy Environment

4.3.1. Algorithm Precision Verification in Gaussian Noise
Environment. We know that in the actual driving conditions,
the vehicle will inevitably encounter a variety of noise
interference. If the algorithm is verified only in the noiseless

environment, the noise immunity of the algorithm cannot
be examined. Therefore, we verify the performance of the
improved GA-UPF algorithm in a noisy environment. We
add 30 dB of Gaussian white noise data to the current and
60 dB of Gaussian white noise to the voltage. The noise signal
is shown in Figure 8.Then we use noise data to perform SOC
estimation based on the improved GA-UPF algorithm. The
estimated results are shown in Figure 9.

The basic parameters:𝑁 = 50, 𝑛 = 16, G = 30, 𝑃𝑐𝑜𝑟 = 0.8,𝑃𝑚𝑢𝑡 = 0.01, 𝛼 = 0.5, 𝑘 = 2, 𝛽 = 0.
It can be shown in Figure 9 that the improved GA-UPF

algorithm proposed in this paper still has good estimation
accuracy, and the error is relatively stable. However, the
accuracy of the improved GA-UKF algorithm drops to about
4.5%. And the estimation accuracy of LS-UPF algorithm
is seriously deviated; especially in 2000-2500 iterations, the
SOC estimation error of the LS-UPF algorithm reaches 12%.
Such error is not allowed in engineering applications.

In order to verify the SOC estimation accuracy of the
improved GA-UPF algorithm under different noise environ-
ments, we added 60 dB of Gaussian white noise to the current
data and 80 dB of Gaussian white noise to the voltage data.
The data with noise is shown in Figure 10. Then we use the
data of Figure 10 to estimate the SOC. Then we compare it
with the SOC estimation results obtained by the battery data
of Figure 8. The comparison results are shown in Figure 11.

The result shows that the “solid line” SOC estimation
results representing strong noise are basically consistent with
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Figure 8: Current with 30 dB noise and voltage with 60 dB noise.
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Figure 9: Verification results in noisy environments.
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Figure 10: Current with 60 dB noise and voltage with 80 dB noise.
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Table 3: Improved GA-UPF algorithm time complexity analysis results.

Algorithm Running Times Average Time for One Iteration Total Running Time
LS-UPF 70 44.1ms 132.3s
Improved GA-UKF 70 41.7ms 125.1s
Improved GA-UPF 70 46.3ms 138.9s

IGA-UPF with 60dBUd 30dBIt
IGA-UPF with 80dBUd 60dBIt
SOC-real value
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Figure 11: Comparison of SOC estimation results under different noise environments.

the “dotted line” SOC estimation results representing weak
noise, and there is no significant accuracy deviation due to
the difference in noise intensity. Therefore, it can be proved
that the proposed SOC estimation method based on the
improved GA-UPF algorithm has strong antinoise ability.
Furthermore, it can be reflected from one side that the
improved GA algorithm proposed in this paper has good
antinoise ability and can accurately identify the parameters of
PNGVmodel under noisy environment. It effectively reduces
the adverse effects of noise on SOC estimation in engineering
applications.

4.3.2. Algorithmic Accuracy Verification in Non-Gaussian
Noise Environment. Considering the complex and variable
noise environment of electric vehicles in engineering appli-
cations, we verify the SOC estimation performance of the
improved GA-UPF algorithm in the colored noise environ-
ment.The data for adding colored noise is shown in Figure 12.
The SOC estimation results are shown in Figure 13.

The result shows that the improved GA-UPF algorithm
also has good SOC estimation accuracy under colored noise.
The maximum absolute error of the SOC estimation is
0.7%, and the convergence efficiency is excellent. It can be
proved that the improved GA-UPF algorithm proposed in
this paper also has strong antinoise ability in the colored
noise environment. It is suitable for engineering applications
in electric vehicles with complex noise environments. It also

reflects the antinoise ability of the improved GA algorithm in
parameter identification.

4.3.3. Improved GA-UPF Algorithm Stability Verification
under Noisy Environment. In the environment of Gaussian
white noise and colored noise, the stability of the estimation
accuracy of the improved GA-UPF algorithm is verified. The
result is shown in Table 4.

The result shows that under different white noise inten-
sities, the SOC estimation based on the improved GA-UPF
algorithm shows good stability under multiple verifications,
and the maximum absolute error is less than 2.5%, and the
root mean square error is about 0.6%. In the colored noise
environment, the algorithm also shows good stability, the
maximum absolute error is about 2%, and the root mean
square error is about 0.9%. It is proved that the improved GA-
UPF algorithm proposed in this paper still has good stability
under complex noise environment, is suitable for engineering
applications, and has certain practicability. However, it can
also be seen that the SOC estimation error will increase with
the increase of the data noise intensity. It is also explained
from one side that the noise reduction process is necessary
for any algorithm when the noise intensity is too high.

5. Conclusions

In this paper, an online identification method for power
battery model parameters based on improved GA algorithm
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Figure 12: Data with colored noise.
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Figure 13: SOC estimation results under colored noise.

is proposed to solve the problem that SOC estimation accu-
racy is highly dependent on model parameters. In addition,
the driving conditions of electric vehicles are complex and
variable, which makes the collected current signals have a lot
of noise, abnormal interference signals, and spike transient
signals. Therefore, this paper proposes a power battery SOC
estimation method that combines improved GA algorithm
with UPF.The advantages of this algorithm are as follows.

(1) The improved GA algorithm is more suitable for
online identification of power battery parameters
with nonlinear and complex time-varying charac-
teristics. It can converge quickly and reduce the
probability of falling into local optimum. It can meet
engineering requirements and improve the accuracy
of model parameter identification.

(2) The improved GA algorithm combined with the
UPF algorithm is used for SOC online estimation

of electric vehicle power battery, which has strong
robustness, can effectively suppress various types of
noise and outlier interference, and makes the algo-
rithm have better stability.

In the simulation and verification section, the stability,
noise immunity, robustness, and estimation accuracy of
the SOC estimation method based on the improved GA-
UPF algorithm are verified by comparison with the LS-UPF
algorithm and improved GA-UKF algorithm. The simulation
results demonstrate the effectiveness and practicability of the
improved GA-UPF algorithm.

Data Availability

Thedata used in this paper comes from the experimental data
of the OEM. It is currently a trade secret and should not be
disclosed.
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Table 4: Improved GA-UPF algorithm stability verification under noisy environment.

Algorithm noise Run times MaxAE(%) RMSE(%)
Improved GA-UPF 60dBUd; 30dBIt 70 [0.5042,1.4236] [0.3689,0.6626]
Improved GA-UPF 80dBUd; 60dBIt 70 [1.6503,2.2333] [0.8029,0.9867]
Improved GA-UPF Colored noise 70 [0.4502,1.6896] [0.3147, 0.9718]
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